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We solve a boundary-value problem for a certain linear singular partial differential equation 
of parabolic type by a suitable implicit finite-difference scheme. This allows us to obtain 
precise tabulated values for the mean powers reflected and transmitted by a slab of random 
medium. This is relevant, e.g., to Plasma Physics. 0 1988 Academic Press, Inc. 

1. INTRODUCTION 

The purpose of this paper is twofold. On the one hand, we want to show how to 
numerically treat some boundary-value (BV) problems for certain types of linear 
singular parabolic differential equations arising within the context of Probability 
Theory. To be more precise, these equations represent the Kolmogorov backward 
equations which describe the evolution of the moments of the complex-valued 
reflection coefficient, in the linear theory of wave propagation in one-dimensional 
random media. However, this represents more than a mere example, as several 
other problems, for instance, problems dealing with linear and nonlinear random 
oscillators, call for a numerical treatment of “singular” parabolic equations. 
Furthermore, general theories for BV-problems for parabolic partial differential 
equations (PDEs), even nonsingular ones, do nor exist as yet. By a “singular” 
equation we mean that at least one of the cases of degeneracy, unbounded coef- 
ficients or unbounded domain occurs. On the other hand, we want to obtain precise 
numerical values, to be used in some problems which recently have been proven 
important within the framework of Plasma Physics; cf. [Z]. 

In Section 2 we briefly outline the underlying physical problem and display the 
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PDE to be solved. In Section 3 we describe the method adopted to carry out such a 
program and in Section 4 we give an extensive tabulation of the quantity which, in 
the physical problem, represents the expected value ( 1 R I *), R being the complex- 
valued reflection coefficient referred to above. These numerical results will also be 
discussed regarding convergence, accuracy and stability. The approach of the 
solution from the initial value to steady state is also discussed. In Section 5, we 
summarize the important points of the paper. 

2. THE ORIGINAL PROBLEM: DERIVATION OF THE PDE 

When a plane wave, incoming from a half-space x > L, impinges upon a slab of 
(deterministic or random) medium located in 0 -C x < L and characterized by the 
refractive index n(x) - n,,[ 1 + &g(x)] ‘I’, it is, in general, partially transmitted 
through the slab and partially reflected back. 

The scalar wave field, y”(x), satisfies an equation like 

4x1 * $+k; - 1 1 y” = 0, O<x<L 
n0 

(2.1) 

(cf. [S]), plus boundary conditions at x = 0 and x = L which state the continuity of 
y”, y”’ across the slab [0, L]. Assuming that the field is 

y=e -iko(*-L) + R”(L) eiko(.Y-L) for x>L, 

and (2.2) 

y = T"(L) e-jk@' for x<O, 

the boundary conditions are 

Y”(O) = T”, y”‘(0) = -i/to T” 

= - ikOyE(0), 

y”(L) = 1+ R”, y”‘(L) = - ik,( 1 - R”) 

= -&,[2-y”(L)]. 

(2.3) 

Here k. represents the vacuum space wave number. As E is a small real parameter, 
the refractive index is conceived as a small perturbation around the vacuum value. 

The transmission and reflection coefficients, T”(L) and R”(L), are complex-valued 
quantities which depend on E and L, the slab-thickness, as well as k, and the 
physical properties of the medium. If the medium neither dissipates nor generates 
energy, then 1 T” I* = 1 - 1 R” I*, 1 R&I * and I T” I * being the powers reflected and 
transmitted by the slab, respectively. 
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It is well known that R”(L) satisfies the Riccati equation 

dR”(L) . 
- = E 2 g(~)(eiko”~y~) + e-ikoL)*, 

dL 
L > 0, R”(O) = 0, (2.4) 

when the slab is imbedded in a vacuum space, so that the index of refraction in the 
half-spaces x < 0 and x > L is n, (cf., e.g., [7]). 

Determining R”, 1 R” (* (or the corresponding average quantities, when the 
medium in 0 <X-CL is random) is perhaps the first important goal in studying the 
scattering properties of the slab (0, L). On the other hand, handling a Riccati 
equation such as (2.4) is advantageous from the numerical viewpoint, as in this case 
we face initial-value (IV) problems (suitable for implementation of iterative 
computational schemes), while the underlying wave equation is associated with a 
two-point BV-problem (cf. [7]). 

In the deterministic case we are done. When the slab is made up of a random 
medium, and therefore g(x) represents a certain stochastic process, we are 
interested in the average value of 1 R” I*, say ( 1 R” I*), i.e., the mean reflected power. 
Now, a limit-theorem from the Theory of Stochastic Differential Equations, due to 
Kahsminskii [4], implies that, under suitable but somewhat general conditions, 
when E --) 0 and L -+ co, with &*L z t fixed, the random function R”(c2L) will con- 
verge (in some weak sense) to some limiting random function, say R(c2L) = R’(&*L) 
(diffusion limit). This function represents a diffusion process and can be described 
statistically by the relevant Fokker-Planck equation or by its adjoint, the Kolmgorov 
backward equation, which can be explicitly constructed (see the Appendix). 

In the case corresponding to (2.4) this last equation has the form 

a*u 
g= (1 -p2)$+ 

(1 - p*)* au 
p 

ap’ 
O<p<l,t>O. (2.5) 

Here p=IRI, T=(k$8)Z,t, t=&*L, and 

I,= * s 9?(x) cos(2k,x) dx (2.5’) 
0 

is essentially the power spectral density of the process g( .), W( .) being its correlation 
function. 

Remark. It is worthwhile to observe that the statistical description of our 
physical phenomenon, resting on (2.5), applies, under very general (statistical) 
assumptions, on the random function g(x) entering (2.1). The effect of such a 
“noise” appears in (2.5) via its power spectral density only, which appears as a 
scaling factor in the variable r. 

Together with the IV u(p, 0) = p*, Eq. (2.2) allows us to determine 
(1 R(t)!*) = ~(0, t) (cf. (A5), in the Appendix), which we shall take as an 
approximation to ( 1 R”(&*L)l*), when E is small and L is large. 
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Note that when we construct the infinitesimal generator and then the 
Kolmogorov backward equation, we get a parabolic operator in ~U’O space 
variables, x and y or, in polar coordinates, p and 4. Independence of 4 leads to 
Eq. (2.5). 

Note that Eq. (2.5) has one coeflicient singular as - l/p as p + 0, and is 
degenerate at p = 1, as at that point it is no longer parabolic. 

Our purpose is to describe the numerical treatment of the BV-problem associated 
with Eq. (2.5) and to give precise numerical values of the quantities ([R(t)/‘), 
( 1 T( t)l ’ ) = 1 - ( 1 R( t)l 2), t = EEL, correspondingly to Eq. (2.4), in the diffusion 
limit referred to above, E -+ 0, L -+ cc, tz2L z t fixed. The quantity ( 1 R(t)/ 2, is given 
by ~(0, t), u(p, t) being the solution to (2.5). A method for doing this is shown in 
the next sections. 

We end this section by recalling that in [7] the adjoint equation of (2.5) i.e., the 
equation for the transition probability density, say p, instead of that above (which, 
for suitable initial values, furnishes the moments), was solved: An explicit formula 
was obtained for p, and then, by integration against the measure p dp, the moments 
such as ( 1 RI’) could be computed. A plot was then obtained by performing such 
an integration numerically (cf. also [S, 61). 

However, it is highly desirable to solve the PDE above in order to achieve the 
same results, because this procedure represents a much more general approach, 
applicable to a wider class of problems where explicit formulae cannot be obtained. 
Moreover, we want to give a precise extensive tabulation of the values of ( I R ( 2, 
and ( I T12) = 1 - ( ) R I’), which does not seem to have been recorded in the 
existing literature. This is useful in view of several applications of interest at the 
present time, for instance, in Plasma Physics (cf. [2]). 

3. PRELIMINARY CONSIDERATIONS: ABOUT THE SINGULARITIES 

We shall solve problem (2.5) by using an implicit scheme of finite differences. 
However, in order to proceed up to this point, we need to overcome the difficulties 
that beset Eq. (2.5). In fact, the equation is degenerate at p = 1 (where it is no 
longer parabolic), and singular at p = 0 (where some coefficient blows up). 

As for the degeneracy, we observe that, when p --) 1 -, Eq. (2.5) reduces to U, = 0, 
provided that both up and upp remain bounded. We can integrate this directly, with 
theIVu(p,O)=p’(forp=l), togetu(l,t)=u(l,O)=u(p,O)~,=,=1. 

As for the singularity at p = 0, by observing that both the PDE and the IV are 
even functions of p, we set, by symmetry, 

au 
ap p=o 

=o (3.1) 

(provided only that up exists up to the boundary p = 0), which will allow us to 
dominate the singularity at p = 0: In the numerical scheme we shall replace 
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(u,l~)l,=~ with uppIp=o~ by l’H&,pital’s rule. This idea has 
P. Jamet for handling similar singularities in ordinary differential 

Therefore, the problem that we solve numerically is 
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been exploited by 
equations (cf. [3]). 

U(P, 0) = P2, O<p<l 

$(0,7)=0, O<z<T, 
(3.2) 

u( 1, t) = 1, 

where t = (kz/8) I, .s2L, and T > 0 is an arbitrary fixed number. 

4. NUMERICAL TREATMENT AND DISCUSSION OF THE RESULTS 

After the considerations about the singularities in Section 3, we can now 
implement our scheme of finite differences. We shall use an implicit scheme, with 
forward time-differences and space-centered differences (the Crank-Nicholson 
scheme; see, e.g., [ 1, lo]). 

We divided the space interval 0 < p < 1 into N, - 1 sections of length Ap, and 
chose a suitable time step-size A7. We typically chose N, = 40 points and A7 = 0.04, 
so that Ap = l/(N, - 1) s 0.0256 and 2 E A~/(dp)~ z 60.84. 

In order to test convergence, accuracy and stability, however, we varied A7 and 
ran the program for A7 =0.016, 0.02, 0.06 and N, = 60, in all possible com- 
binations, also. It turned out that in passing from the value A7 = 0.04 to the value 
A7 = 0.02 [A7 = 0.061, by keeping N, = 40 fixed, the results agreed up to O( 10M3) 
[up to 0(10-2)], while, by using N, = 60 points we found agreement with the 
“typical” case N, = 40, A7 = 0.04 up to the order 0( 10e3), for the same value of A7. 

Comparison of the cases N, = 60 and A7 = 0.02, 0.06 with the corresponding 
results for N, = 40, showed agreement, respectively, up to 0( 10p4), 0( lo-‘). Com- 
paring, finally, the results obtained for N, = 60 by further reducing A7 from 0.02 to 
0.016 showed a variation within the order O(10e3). 

The accuracy that could be expected theoretically is O((Ap)‘) + O((A7)2) E 
O(10e3) for Ap ~0.0256 (corresponding to N, =40) and A7 =0.04, for the 
Crank-Nicholson scheme. However, this is correct, strictly speaking, only for the 
heat equation (cf. [l; 10, p. 1891). 

We assumed therefore that good convergence and an accuracy sufficient for our 
purposes were achieved with N, = 40, A7 = 0.04. 

As for the stability, we did not observe any oscillation in any of the cases repor- 
ted above: Handling the singularity at p = 0 by means of (3.1) above was essential 
and no problem arose. The scheme being implicit, we can expect stability for any 
value of 1; however, the accuracy improves when a smaller 1 is chosen. The smallest 
value of 1 we used was L s 24.336, obtained for N, = 40, A7 = 0.016. 
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The results obtained for (OR/“) = ~(0, T) with the typical values N, = 40, 
A7 =0.04 are given in Table I. They seem to be in excellent agreement with the 
values plotted in [7], which were computed by a numerical quadrature in an 
explicit formula (see also [S, 61). 

TABLE I 

( 1 R 1’) 3 u(O,7) versus 7 3 @i/8) I,c*L, I, Defined in (2.5’) 

7 (lRl*> 7 <lRl*> 

0.04 0.139 1.64 0.965 
0.08 0.241 1.68 0.967 
0.12 0.334 1.72 0.969 
0.16 0.406 1.76 0.971 
0.20 0.467 1.80 0.973 
0.24 0.520 1.84 0.975 
0.28 0.565 1.88 0.976 
0.32 0.605 1.92 0.978 
0.36 0.639 1.96 0.979 
0.40 0.670 2.00 0.980 
0.44 0.698 2.04 0.982 
0.48 0.723 2.08 0.983 
0.52 0.745 2.12 0.984 
0.56 0.765 2.16 0.985 
0.60 0.783 2.20 0.986 
0.64 0.799 2.24 0.987 
0.68 0.814 2.28 0.987 
0.12 0.828 2.32 0.988 
0.76 0.840 2.36 0.989 
0.80 0.852 2.40 0.990 
0.84 0.862 2.44 0.990 
0.88 0.872 2.48 0.99 1 
0.92 0.881 2.52 0.991 
0.96 0.889 2.56 0.992 
1.00 0.897 2.60 0.992 
1.04 0.904 2.64 0.993 
1.08 0.910 2.68 0.993 
1.12 0.916 2.72 0.994 
1.16 0.922 2.16 0.994 
1.20 0.921 2.80 0.994 
1.24 0.932 2.84 0.995 
1.28 0.936 2.88 0.995 
1.32 0.940 2.92 0.995 
1.36 0.944 2.96 0.996 
1.40 0.948 3.00 0.996 
1.44 0.951 3.04 0.996 
1.48 0.954 3.08 0.996 
1.52 0.957 3.12 0.996 
1.56 0.960 3.16 0.997 
1.60 0.962 3.20 0.997 
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0 0.50 1 .oo 1.50 z 
I I I 1 I 1 J 

0 2 4 6 r/4 

FIG. 1. (I R(r)l*) E ~(0, T) plotted versus 7 I (k$8) I,c*L, I, being defined in (2.5’). Note that in 
Ref. [7] the abscissa is, instead, 4r = (ki/2) I,E~L. 

In Fig. 1 we plotted, for convenience, (1 R(r)l’) z ~(0, r) (cf. the graph of 
( 1 T(r) 1’ ) = 1 - ( 1 R(r)1 2, in [Z, 5, 71). Here we give a proof of the monotonicity 
of such a quantity as a function of r (T cc s2L), of which there is numerical 
evidence, besides physical justification. This is much easier if we start from the PDE 
(2.5) rather than using the explicit formula given in [7]. 

As the PDE in (2.5), (3.2) has coefficients independent of r, the quantity 
u(p, r) = u,(p, r) solves the same equation: 

(4.1) 

Moreover, by using (2.5) and the initial value, u(p, 0) = p2, we obtain 

to, 0) = U,(P, 0) = (1 - P212 a24p, 0) + (I- P212 %P, 0) 
ap2 P aP 

=4(1 -p2)*>o, for O<pGl. (4.2) 

As 

&I au, 

&L,'~ r=O ar I I 
= d [u,(O, T)] = 0 

(true also because of the symmetry) and 

(cf. (3.2)), it follows from the maximum principle that 

(4.3) 

(4.4) 

(4.5) 

581/74/l-16 
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i.e., in particular, u,(o, T) > 0 for every p with 0 d p d 1. This shows, for p = 0, the 
monotonicity above. Moreover, it results from (3.2) and the maximum principle 
that O<u(p, z)< 1, so that, in particular, 06 (IR(t)l*) d 1 follows. 

Finally, we studied the rate of approach of the solution of (3.2) to the stationary 
u&e u(p, co) E 1. In Figs. 2 and 3 we plotted u(p, T,) versus p for 0 6 p 6 1, for 
several values of r = TV, j representing the time-steps number. Such a rate could be 
estimated by 

max 4P3 Tj+ 10) 
(4.6) 

O<PSil 4P, Tj) ’ 

for various j. This quantity must approach 1, when zi gets large. Regarding the 
main quantity of interest, ( 1 R(r)J2) E ~(0, r), we can just compute the ratio 

r.su(Q Tj.10) 
J 

‘lo, Tj) ’ 

(4.7) 

for which we get r40z 0.980/0.962 r 1.0187, r50 z 0.990/0.980r 1.0102, reo z 
0.994/0.990 E 1.0040 (cf. Table I and Figs. 2 and 3), and r70 z 0.997/0.994 z 1.0030 
(cf. Table I). 

The parameters in (4.6), (4.7) give the rate of approach of the solution to its 
steady-state by relating the values of u to the number of time steps (of size 

t--7z40 
0.6t 'IO -- 

0.5 

0.1 
t / 1 

OI 
0 0.2 0.4 0.6 0.8 e 1.0 

FIG. 2. u(p, TV) versus p for several values of T,, corresponding to 1, 10, 20, 30 time steps. 
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0 0.2 0.4 0.6 0.6 
e 

1.0 

FIG. 3. u(p, 5,) versus p for several values of z,, corresponding to 40, 50, 60, 70 time steps. 

AT = 0.04). We can measure such a rate of approach relating the relative variation 
of u to r, by the ratio 

u(PY zj+ 10) - u(P, zj) 1 

U(P, zj) Arj I I 

U(P, rj+ 10) _ l 

=dt, u(p, Tj) ’ (4.8) 

where Azj E zj+ 1o - rj = 1OAr = 0.4. We obtain, for p z 0: s40 r 0.0187/0.4 z 0.046, 
and similarly sSO z 0.0102/0.4 s 0.025, shO s 0.0040/0.4 = 0.010, s,~ z 0.0030/0.4 z 
0.007. 

5. SUMMARY 

The problem of solving numerically a certain parabolic equation which is 
singular at certain points of the boundary, has been worked out in detail. The effect 
of the singularities has been investigated and dominated in a suitable way. Then, a 
finite-difference scheme has been implemented to compute the solution. Finally, we 
have discussed the results as well as the accuracy and stability of the method. A 
table of values of the physically relevant quantity, the mean power reflected by a 
random medium, has been provided within the order 0( 10P3). The monotonic 
character of such a quantity as a function of E’L, E being the “size of the noise” and 
L the width of the slab of the random medium, which is evident from the numerical 
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results, have been proved. Some graphs which show the speed of approach of the 
solution to its stationary value have also been given. 

All the computations were carried out on the CDC/Cyber 170, at the Courant 
Institute of Mathematical Sciences, New York University. 

APPENDIX 

One can show that, under suitable but rather general hypotheses, the stochastic 
process solution to the stochastic differential equation 

Y’(X) = EF(x, Y(X), z(x)), y(x) E R”, z(x) E R” 

Y(o)= YY 
(AlI 

where E is a small parameter, z(x) is a suitable stochastic process, E{ Fj = 0, E{ . } 
denoting expected values, converges in some sense to a limiting stochastic process, 
say y” (cf. [4; 8, pp. 26271, see also [9, pp. 540-5413, when E + 0, x + co, with E’X 
fixed. Such a process turns out to be a diffusion process and its statistics can thus be 
described by the relevant Fokker-Planck equation or, alternatively, by the 
corresponding Kolmogorov backward equation. The latter has the form 

24, = L[u] (t = &2X), (AZ) 

with 

643) 

where aV, bi can be evaluated from F. We can compute the conditional expectation 
of any bounded continuous functional of y”, f (y”(t)), by solving (A2) with the 
initial value 

U(Y9 0) =f (Y)? (‘44) 

getting 

Ey. ;{f (y”(t))} = 40, t), (A5) 

(cf., e.g., [8, pp. 26-271 or [9., p. 5411). For example, we can compute the second 
moment E,,, .{ 1 y”(t)j2), by solving (A2) with the initial value f (y) = ) y ( 2. We can 
then consider this as an approximation for the corresponding quantity for y(x), the 
solution to (Al), when E is sufficiently small and x is sufficiently large. 
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